

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 1 of 18

Softuniada 2019

1. Digitivision

You will be given 3 digits. Your task is to find if there is any 3-digit number:

 Formed by the given digits

 That is divisible (without remainder) by the sum of the given digits

If there is any number fulfilling the conditions specified above, you should print "Digitivision successful!".

If there is no such number, you should print "No digitivision possible.".

Input

The input comes in 3 input lines, each of them containing a single digit.

Output

Depending on whether a "digitivision" is possible or not you should print one of the following lines:

 "Digitivision successful!", if there is a successful "digitivision" without remainder.

 "No digitivision possible.", if there is no possible "digitivision" without remainder.

Constraints

 The input lines will contain only digits – integers in range [0, 9].

 Allowed time / memory: 100ms / 16MB.

Examples

Input Output Comment

6

2

1

Digitivision successful! The sum of the digits is 9. We start forming the numbers:

621 / 9 = 69

612 / 9 = 68

261 / 9 = 29

216 / 9 = 24

162 / 9 = 18

126 / 9 = 14

There are 6 possible divisions without remainder.

We needed only 1.

Hence, the "digitivision" is possible.

3

3

4

No digitivision possible! The sum of the digits is 10. We start forming the numbers:

334 / 10 = 33.4 (remainder 0.4)

343 / 10 = 34.3 (remainder 0.3)

433 / 10 = 43.3 (remainder 0.3)

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 2 of 18

There are no possible divisions without remainder.

Hence, the "digitivision" is NOT possible.

2. Crocs

You have been tasked to draw a croc shoe, by an unusually rich client, for an unusually low price.

You will be given N – an odd integer number. You draw a croc with width – N * 5 and height – N * 4 + 2. For

more details on the form of the croc, you should see the examples below.

Input

The input will consist of a single line, on which you will receive an odd integer number.

Output

The output should be a correctly-drawn croc shoe, just like the examples below.

Constraints

 The integer N will always be an odd number in range [0, 100].

 Allowed time / memory: 100ms / 16MB.

Examples

Input Output Input Output Comment

3 #########

###############

###############

###############

 #########

5 ###############

 ###############

#########################

#########################

The head lines (first and last

several lines) are exactly N / 2

(integer division) by count.

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 3 of 18

#########################

#########################

 ###############

 ###############

3. Nexus

While studying arrays of various atoms, Doctor Sanity manager to discover a strange behaviour – while connecting 2

pairs of atoms from 2 parallel arrays, a nexus is initiated. If the 2 connections cross each other, the nexus disperses

and loads all other atoms with nuclear value. He wanted to create an algorithm simulating this behaviour, but he’s

too lazy… So you’ll have to write it for him.

You will receive 2 sequences of integers, separated by spaces – the 2 arrays of atoms.

After that you will start receiving 2 pairs of indices – the 2 connections in the arrays. Each connection will be in the

form of an index from the first array and another index from the second array.

You must check if the 2 connections cross each other. If they do, you must remove all elements between them

from both arrays, and you must increase all integers, that are left afterwards in both arrays, with the summed up

value of the connected elements (Nexus value).

In case of no crossing of connections, you should do nothing.

You will continue receiving connections until you receive the command "nexus", at which point you must print

what is left of the arrays and end the program.

Input

The input consists of several sequences:

 First you will receive 2 lines, containing sequences of integers, separated by spaces – the arrays.

 On the next several lines you will receive the pairs of connections in the following format:

{firstArrayIndex}:{secondArrayIndex}|{firstArrayIndex}:{secondArrayIndex}

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 4 of 18

 When you receive the command "nexus" the input must end.

Output

The output should consist of 2 lines, containing what is left of the arrays, with its elements – separated by each

other with a comma and a space.

Constraints

 The input will always be in valid format.

 The arrays will contain integers in range [0, 10000].

 The arrays will not necessarily have the same length.

 The indices in the connections will always be valid and inside the arrays.

 Allowed time / memory: 100ms / 16MB.

Examples

Input Output Comment

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

2:5|5:2

nexus

19, 20, 25, 26, 27, 28

19, 20, 25, 26, 27, 28

See the examples above.

5 10 15 20 25 30

40 35 30 25 20 15 10 5

1:6|2:1

nexus

75, 90, 95, 100

110, 75

The range of the elements in the

second array is larger than that of

the first array.

Naturally, more elements are

removed from the second array.

9 5 10 4 5 6 7 10

3 3 3 4 5 6 7 8

0:1|1:0

0:1|1:0

0:1|1:0

nexus

634, 637

634, 635

4. Elemelons

If there is a watermelon, then there should be earthmelon, firemelon and airmelon. Introducing, the Elemelons!

Doctor Sanity has a very unusual 3-D garden with elemenlons. The elemelons like to morph into each other when

they are not observed, and Doc doesn’t like that. He has called for your help in implementing an algorithm which

helps him observe his surroundings while reaping elemelons so that they don’t change.

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 5 of 18

You will be given N – the dimensions of the 3-D matrix – the garden of Doctor Sanity, and the matrix itself

afterwards, in a series of N rows containing the columns of N matrices – the layers of the 3-D matrix. The matrix will

consist of the following symbols: W (Watermelon), E (Earthmelon), F (Firemelon), A (Airmelon).

For an example, let’s color W (blue), E (orange), F (red) A (gray-white)

Check the examples below, for more info:

After you’ve successfully initialized the 3-D matrix, you’ll start receiving coordinates – the cell that Doctor Sanity will

harvest a melon from. Upon harvesting a melon, that cell in the 3-D matrix should be set to '0'. All other melons,

except the ones in direct sight of Doc (up, down, left, right, front, back from the currently harvested cell), should

morph.

The morphing order is: Watermelon (W) -> Earthmelon (E) -> Firemelon (F) -> Airmelon (A) -> Watermelon (W)…
and so on.

Upon receiving the command "Melolemonmelon", the input sequence should end, and you should print the

current state of the 3-D matrix in the same format, that you’ve received it from the input. Then you should end the

program.

Input

The input consists of several lines:

 On the first line you will receive an integer number N – the size of the 3-D matrix.

 At the next N lines the layers of the 3-D matrix are given (from bottom to top) as a sequence of N matrices

separated by " | ".

 Afterwards, you will start receiving coordinates of a cell in the following format:

"{layer} {row} {column}"

 When you receive the command "Melolemonmelon" the input sequence should end.

Output

As output you must print the current state of the 3-D matrix, in the same format as it came from the input – rows,

containing the columns of N matrices – the layers of the cube (from bottom to top).

Constraints

 The integer N will be in range [0, 50].

 The 3-D matrix will always be in a valid format and will only contain the following characters: 'W', 'E', 'F', 'A'.

 The coordinates for the cell to be harvested, will always be inside the 3-D matrix.

 Allowed time / memory: 100ms / 16MB.

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 6 of 18

Examples

Input Output Comment

3

W W W | E W A | E E E

F F F | F A F | W W W

A A A | A E A | A A A

1 1 1

Melolemonmelon

E E E | F W W | F F F

A F A | F 0 F | E W E

W W W | W E W | W W W

The cell at layer 1, row 1, column 1 was changed

to '0', as it was harvested.

The yellow marked cells were in direct sight of

Doctor Sanity, which is why the melons inside

them didn’t morph.

All other cells’ melons morphed into the next

melon in order.

Input Output

4

A W F A | W W W W | W W W W | A A A A

W F W F | F F F F | A A A A | F F F F

A W E W | E E E E | A A A A | W E E W

A F W E | W W W W | W W W W | W W W W

1 1 1

2 3 2

3 1 3

Melolemonmelon

F A E F | A F A A | A A A A | F F F E

A W A E | W 0 W E | F E F E | E E W 0

F A W A | W A W W | F F E F | A W W F

F E A W | A A F A | A F 0 F | A A F A

5. Grid Voyage

Doctor Sanity’s pet pokemon – Slifer, is training his sense of direction with a game that Doc designed for him, called

Grid Voyage. You should help Slifer, as he is not the smartest pokemon in existence. Try to write an algorithm which

simulates the Grid Voyage game.

You will be given N – an integer. You must create a 2-D matrix of integers with N rows and N columns, each cell with

value – 0. You will then receive the coordinates of the start point.

Afterwards, you will start receiving lines, containing coordinates of a destination point, the initial direction (left,

right, up, down) and current stamina. You must reach the destination point doing a grid-based movement, only

changing directions when you run out of stamina.

 You consume 1 stamina per step (per cell movement).

 When you run out of stamina, you MUST change the direction and reset your stamina.

 You must increase the value of each cell you step on with 1.

Example: Initial position – [0, 0].

First destination [2, 2]. Initial direction – down. Stamina – 2.

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 7 of 18

Slifer is always looking for the fastest path, which means that he should always move in directions, towards his next

destination.

Slifer is fat – he can ONLY turn left or right. He CANNOT completely turn around in a reversed direction.

Slifer possesses a bit of intellect – if he is in a dilemma (he can go several directions, and all of them are leading to

his target), he will try to turn LEFT first.

 If he cannot turn left (not enough space in matrix, to make the needed steps before the next change in

direction), he will try to turn right.

 If he can turn neither left, nor right, he will deem the current Voyage – impossible and return to his

previous position. In this case, there should be NO cells affected by increased value.

If it is possible to reach the destination, you must print how many rests (how many times you’ve ran out of stamina

and you’ve changed direction) Slifer took to reach it. If it is NOT possible to reach the destination, you must print

"Voyage impossible".

When you receive the command "eastern odyssey", the input sequence should end, and you should print the

whole matrix.

Input

The input consists of several input lines:

 On the first input line you will receive N – the dimensions of the 2-D matrix.

 On the second input line you will receive X and Y, separated by a space – the initial position of Slifer.

 On the next several input lines you will receive coordinates of a destination point, a direction and stamina

in the following format: {destinationX} {destinationY} {direction} {stamina}

 When you receive the command "eastern odyssey", the input sequence should end.

Output

As output you must print:

 For every voyage:

o If it is possible, the number of rests it took to reach the destination point.

o If it is NOT possible – you should print "Voyage impossible".

 At the end of the program:

o The whole matrix – each row on a new line, each column separated by a space, from the others.

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 8 of 18

Constraints

 The integer N will be in range [0, 50].

 The coordinates of the initial point and destination points will always be VALID and inside the matrix.

 The directions will always be valid.

 The stamina will always be in range [1, 50].

Examples

Input Output Comment

5

0 0

2 2 down 2

4 4 right 1

eastern odyssey

1

3

0 0 0 0 0

1 0 0 0 0

1 1 1 1 0

0 0 0 1 1

0 0 0 0 1

First Voyage:

Second Voyage:

The stamina is 1 this time. We must change

direction after each step.

7

3 3

5 5 left 2

6 6 right 2

eastern odyssey

5

Voyage impossible

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 1 0 1 0

0 1 1 1 0 1 0

0 0 0 0 0 0 0

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 9 of 18

6. Tri-Force

The TriForce is specific figure, formed by generating all possible triangles in a specific circle. You have been tasked to

generate a TriForce by given parameters.

You will be given a P – a perimeter and a R – a radius of circle. Generate the sides of all possible triangles

inscribed in a circle with the given R which have a perimeter equal to the given one.

NOTE: Consider only integer sides.

NOTE: A triangle with sides – a = 10, b = 12, c = 5, should be considered different from a triangle with sides a = 5, b =

12, c = 10.

NOTE: Generating should always be done from the side with the greatest possible value. See the examples for more

info.

Input

The input will consist of 2 lines:

 On the first input line you will receive P – the perimeter.

 On the second input line you will receive R – the radius of the circle.

Output

The output will consist of several lines:

 As output you must print all possible triangles, following the rules above, in the following format:

{a}.{b}.{c}

Constraints

 The perimeter P will be an integer (naturally, if all sides are integers) in range [0, 30000].

 The radius R will be a floating-point number in range [0, 15000].

 Allowed time / memory: 100ms / 16MB.

Examples

Input Output

12
2.5

5.4.3

5.3.4

4.5.3

4.3.5

3.5.4

3.4.5

30

6.5

13.12.5

13.5.12

12.13.5

12.5.13

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 10 of 18

5.13.12

5.12.13

7. Undefined

Have you ever heard of blockchain? Well, even if you didn’t it is not a problem. In blockchain, its all about mining

blocks. Mining a block is done by 2 nodes – each node is a type of business, but the 2 nodes (businesses) must have

the same owner, and they must be connected only to each other.

You will receive N – an integer, which is the amount of business owners.

On the next N lines you will receive the owner’s initial – a letter from the alphabet, and his businesses – which, will

be integers – each integer, representing the corresponding business’s net worth.

If 2 businesses (a pair of businesses) are connected ONLY to each other and they have the SAME owner, they WILL

mine a block. That block will have a value – equal to the absolute value of the difference between the 2 businesses’
net worth.

You must generate a network of business owners and pairs of businesses in which you mine the blocks with the

highest summed up value. However, note that, NO business should remain disconnected.

Input

The input will consist of several lines:

 On the first input line you will receive N – the amount of business owners.

 On the next N lines you will receive each owner’s initial and businesses in the following format:

{owner} -> {business1}, {business2}, {business3}...

Output

As output:

 You must print the owners, with each of their business pairs, in the following format:

{owner} | {businessPair1First} <-> {businessPair1Second}, {businessPair2First}...

o Each owner must be printed on a new line.

o The owners should be in order of addition.

o The businesses should be ordered by mined block value in descending order.

o If an owner does not have any pairs, you should just print "none".

 You must print the leftover connections (the businesses, that did not mine any blocks), if there are any, in

the following format:

{owner}{business} <-> {otherOwner}{otherBusiness}

o The leftover connections must be ordered by the sum of each 2 businesses’ net worth, in

descending order.

 You must print the total mined block value.

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 11 of 18

Constraints

 The integer N – count of owners will be in range [0, 25].

 The businesses’ net worth will be integers in range [0, 100000].

 Each owner may be given up to 1000 businesses.

 Allowed time / memory: 100ms / 16MB.

Examples

Input Output Comment

3

A -> 60, 120, 40, 30

B -> 300, 4

C -> 50, 200, 220, 20

A | 120 <-> 30, 60 <-> 40

B | 300 <-> 4

C | 220 <-> 20, 200 <-> 50

756

3

A -> 60, 120, 40, 30

B -> 300, 4, 4

C -> 50, 200, 220, 20, 5

A | 120 <-> 30, 60 <-> 40

B | 300 <-> 4

C | 220 <-> 5, 200 <-> 20

B4 <-> C50

801

Notice how we have 2 more

elements, one at B and one at 5 that

are left-overs, after the pairs have

been generated.

We just pair them together and

print the other pairs in the network,

so that we mine the maximum block

value.

3

A -> 60, 120, 40, 30

B -> 300, 4, 4

C -> 50, 200, 220, 20

A | 120 <-> 30

B | 300 <-> 4

C | 220 <-> 20, 200 <-> 50

B4 <-> A60

B4 <-> A40

736

When you don’t have another

leftover element with which to pair

one, you will need to ruin a

business pair, and you must ruin

the one that will bring you the least

money, so that the network remains

with the highest mined bock value.

8. Rooks

On a rectangular chess board with X rows and Y columns, N rooks should be placed in such a way, so that each of

them is attacked by at most 1 other rook. One rook is attacked by another rook, if they are placed on the same row,

or on the same column, and there are no other rooks between them.

Write a program, which finds the count of all possible ways that these N rooks can be placed on the X / Y chess

board, so that they cover the conditions specified above. Due to the fact, that the answer may be a very big

number, always print the remainder of the division of the actual count with 1,000,001.

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 12 of 18

Input

The input consists of 3 input lines:

 On the first line you will receive X – the rows of the chessboard

 On the second line you will receive Y – the columns of the chessboard

 On the third line you will receive N – the count of rooks that should be placed on the chessboard

Output

The output should consist of a single line, containing the remainder of the division of the desired count, with

1,000,001.

Constraints

 X, Y and N will be integers in range [1, 100].

 Allowed working time / memory: to be defined.

Examples

Input Output Comment

4
6
2

276 There are only 2 rooks here and all ways they can be placed are

valid. The answer is: (4 * 6) * (4 * 6 - 1) / 2 = 276.

2
3
3

6

1
100
3

0 We cannot place 3 rooks on one row.

9
6
10

340200

98
99
100

951454 The actual count is:

477162926599652378693202655573012530649120970956713215

413593915639833497991226651408072530190805115228714441

793077869034810249957308229677723184016455888816349376

99689344614655096884769587200000000000000000000000

9. Moneypoly

Mr. Moneybags’s is a huge investor and a great businessman so it may come as no surprise that his favourite game

is Moneypoly, it’s kind of like Monopoly, but a bit different. The game’s rules are very simple - the only player is Mr.

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 13 of 18

Moneybags and he starts with an account balance of 0. The playing area consists of N indexed tiles, with Mr.

Moneybags being able to move from one tile to another, only if they have a connection between them.

Each tile has an integer value associated with it - the investment result, representing the change to Mr.

Moneybags’s account balance as result of his investment in the tile (a positive number meaning the investment

paid off and Mr. Moneybags gained money and a negative number meaning the investment failed and Mr.

Moneybags lost money).

Each connection between tiles has an integer value associated with it – the investment time, representing the

amount of time it would take Mr. Moneybags to move to and acquire the tile on the other end of the connection.

Mr. Moneybags starts the game by stepping on the starting tile (tile with index 0), each time he steps on(invests in)

a tile he will modify his account balance with the tile’s investment result and write the index of the tile in his

investment history. After every investment, Mr. Moneybag can choose to either end the game or move to an

adjacent tile that has a connection to the tile he is currently stepping on.

Mr. Moneybags believes in an optimized supply chain, so when the game begins he will choose the set of

connections with the smallest combined investment time, that would also provide him a path to every reachable

tile, and will then only move using connections in that set. One more thing, since Mr. Moneybags is good friends

with the banks, while moving between tiles, he has the option to declare bankruptcy, setting his account balance to

0, and deleting his investment history, though he still lands on the tile he is moving to and has to modify his new

account balance and investment history accordingly. Regardless of whether Mr. Moneybags has declared

bankruptcy or not he will never visit the same tile more than once.

The goal is to find the highest account balance Mr. Moneybags can acquire and the indexes of the investments he

had to take to get it.

Input

 On the first line you receive the number N – the number of tiles, with the tiles being indexed from [0…N).
 On the next N lines you receive in ascending order the index of each tile with its associated investment

result in the format “{index} {investment result}”.

 On the next lines, until the command “end” is received you will receive information about a connection in

the format “{tile1} {tile2} {investment time}”.

Output

 On the first line of the output, you need to print the highest account balance Mr. Moneybags can get.

 On the second line print the indexes of investments he had to take as a space separated sequence, with the

numbers sorted in ascending order.

Constraints

 The Indexes of the tiles will always be the numbers [0…N-1].

 The number of tiles N will be between [2…20 000].
 The investment result of each tile will be an integer in the range [-1000…-1] ∪ [1…1000]
 The investment time of each connection will be an integer in the range [-1000…1000]

 In case there are 2 or more connections, each of which can form its own set of connections with the lowest

combined investment time, Mr. Moneybags will always take the connection ending in the tile with the lower

numerical index (i.e. if we have a choice between 0->1 and 3->2, he will chose 0->1 – because 1 < 2). In case

the 2 connections end in the same tile, he will always take the connection with the lower starting index (i.e.

if we have a choice between 3->7 and 5->7, he will always choose 3->7, because 3 < 5).

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 14 of 18

 There will never be more than one set of investments, that Mr. Moneybags can take which grants the

highest account balance.

 Mr. Moneybags will never visit a tile more than once.

 Mr. Moneybags will always start on the tile with index 0.

 Each connection can be traversed both ways.

 There will never be a connection between a tile and itself.

 Allowed time: 600 ms Allowed memory: 32 MB.

Examples

Input Visualization Output

5
0 7
1 3
2 2
3 3
4 2
2 3 9
0 3 2
3 4 3
1 3 4
0 4 14
4 2 5
end

14
0 2 3 4

Comments

Mr. Moneybags start on the Oil Rig (#0) and add its investment result to his account balance:

Account Balance: 0 + 7 = 7

Investment History: #0

Now we have a choice between ending the game, going to #4 or going to #3, we see we can make more profit if we

go to a tile, so we decide to continue the game. Since Mr. Moneybags will only move through the set of

connections with the smallest combined investment time, we need to first find that set. Looking at the playing area

we can see that the set of connections with the smallest combined investment time, that also allows Mr.

Moneybags to reach every tile on the field, is the following:

#0 - #3, #1 - #3, #2 - #4, #3 - #4

Having found the set of connections, we see that our only possible move is to #3, so we decide to go to #3.

Account Balance: 7 + 3 = 10

Investment History: #0, #3

Now again we have a choice, we can end the game, go to #4, go to #2 or go to #1. Since again we can make more

profit by going to a tile, we decide to continue the game. We see that #1 would give us the most money, however

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 15 of 18

since Mr. Moneybags never steps on the same tile twice, if we go to it we would be stuck, so we decide NOT to go

to #1. The only remaining choice that is part of the set is #4, so we decide to go to #4.

Account Balance: 10 + 2 = 12

Investment History: #0, #3, #4

Again we have a choice, we can end the game or go to #2, since again we can increase our account balance by

going to #2 and the connection is in the set, we decide to continue the game and go to #2.

Account Balance: 12 + 2 = 14

Investment History: #0, #2, #3, #4

We have no more tiles we can visit, so we end the game, leading us to the answer of:

Account Balance: 14

Investment History: #0, #2, #3, #4

Input Visualization Output

4
0 -3
1 2
2 -1
3 -2
1 0 7
3 2 11
1 2 4
1 3 2
2 0 11
end

2
1

Comments

Mr. Moneybags starts on the Electricity Company (#0) , it turns out the investment was bad so we lose money:

Account Balance: 0 - 3 = -3

Investment History: #0

Now we have a choice between ending the game, going to #1 or going to #2, since going to #1 will make us money

and the connection to it also is part of the set with the smallest combined investment time, we decide to continue

playing and go to #1. Before stepping on #1, Mr. Moneybags uses his connections to the banks, to declare

bankruptcy and have his account balance and investment history reset.

Account Balance: 0

Investment History:

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 16 of 18

After declaring bankruptcy, Mr. Moneybags lands on #1 and we modify his account balance and investment history

accordingly:

Account Balance: 0 + 2 = 2

Investment History: #1

Now again we have a choice, we can end the game, go to #2 or go to #3. Since there doesn’t seem to be any more

ways to increase our account balance, we decide it’s time to end the game. Mr. Moneybags’ final account balance

and investment history are:

Account Balance: 2

Investment History: #1

10. Plants

An interesting conflict between two species is taking place on the newly renovated Gaf Inatiev Boulevard (any

similarities to real places and events are purely coincidental… honest!). What makes it even more interesting is the

two species are… plants! Exciting, right? Well, one of them is actually a fungus, so not really a plant, but the other
one is a tree, so – close enough.

The battle is happening on the new grates around the trees on the boulevard – around each tree there are channels

for its roots to grow. Each tree’s grate has between 1 and 359 channels, starting from the tree and going outwards

in a radial pattern. The lengths of all the channels are the same (i.e. if you have e.g. 359 channels with a length of

5cm, this essentially creates a circle with a radius of 5cm).

The tree’s roots start growing from the center of the grate towards the outside, but a species of fungus has started

growing on the outside, towards the center. The tree and the fungus are incompatible – the roots of the tree can’t
grow over the fungus, and the fungus cannot grow over the tree. They can reach each other, but not overlap.

The tree grows only during the day, the fungus grows only during the night. During a single day, the tree can only

grow along a single channel. The fungus can also grow only along a single channel during the night (it does not have

to be in the same channel in which the tree grew during the day). Both the fungus and the tree grow by integer

increments.

Both the tree and the fungus must grow during each day/night, and they can only grow in parts of the channels

which are not occupied. If the tree can’t grow during the day, it dies. If the fungus can’t grow during the night, it

dies. Hence the conflict – the first one that fails to grow (due to all the space in the channels being occupied) dies.

This grate ain’t big enough for both of ‘em, wild-west style.

The tree and the fungus have evolved to compete optimally in this conflict. Each of them will always grow

optimally, if possible. This means that they will choose such a length of growth along a single channel, that their

“opponent” is either prevented from growing, or forced into a position where there is no possible optimal move

(i.e. a position that eventually will lead to them not being able to grow, if the current player continues to grow

optimally).

You are examining a specific grate during the beginning of the day. You see the number of channels, the length of

each tree root along each channel, the length of the fungus along each channel, and the radius of the channels (i.e.

the radius of the grate).

Your task is to write a program which, given the above information, determines what the optimal growth for the

tree is during this day. The answer should contain the number of a channel, as ordered in the input, starting from

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 17 of 18

0, and the length of the growth. If there are multiple optimal options for the growth, choose the one in the channel

with the lowest number.

If there is no optimal growth, the program should indicate that (see the output description below).

Input

The first line of the standard input will contain the integer number N – the number of channels.

Each of the next N lines will contain two integer numbers, separated by a single space – the length of the root and

the length of the fungus in that channel (starting from channel 0 and ending in channel N-1).

The last line of the standard input will contain the integer number R – the radius of the grate, i.e. the length of each

channel.

Output

The output should consist of a single line on the standard output.

If there is a optimal growth option, the output should be in the format:

grow I by L

where I is the number of the channel (as ordered in the input) and L is the length of the growth. If there are

multiple options, print the one with the lowest channel number. For example, if the optimal growth options are

channel 3 by a length of 5 and channel 1 by a length of 7, the output should be "grow 1 by 7".

If there is no optimal growth option, print three dashes:

Illustration

Here is a situation with a grate, which has only 2 channels, with a radius of 7 (the grate channels are divided into

sections to illustrate their length of 7, the brown sections are tree roots, the green sections are fungus):

In the initial state, channel 0 has a root with a length of 1 and a fungus length of 4. Channel 1 has a root length of 0

and a fungus length of 6. Since this is the beginning of the day, the tree will grow. The optimal growth for day 1 is in

channel 0 by 1. That way the fungus is forced to grow by 1 either in channel 0 or channel 1 during night 1 (note that

this is a bad position). Wherever the fungus grows during night 1, it will fill up the channel leaving only 1 channel

free – the tree grows in that in day 2, so during night 2 the fungus can’t grow and will die.

Restrictions

0 < N < 360

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.

Follow us: Page 18 of 18

0 < R < 1001

No root or fungus length inside a channel will be longer than R.

There is no limit to the length the tree/fungus can grow during a day/night, but they may only grow inside a single

channel per day/night.

Each root is a single segment and each fungus growth inside a channel is a single segment – you can’t “skip over” the

sections in the illustration above.

N and R will be integers.

Examples

Input Output Explanation

2
1 4
0 6
7

grow 0 by 1 See the illustration

3
5 1
0 7
2 3
10

grow 1 by 2 The tree grows in channel 1, by a length of 2. This is the only optimal growth

in this situation, and it leaves the fungus in a situation where regardless of its

growth, the tree can force it into a similar situation until the last growth

remains for the tree

5
1 1
0 2
2 0
0 2
2 0
4

grow 0 by 2 There are multiple optimal growths for the tree here, but we pick the one

with the lowest channel number – 0

4
0 2
2 0
0 2
2 0
4

The tree can’t survive if the fungus grows optimally. There is an even

number of equally empty channels. If the tree grows fully into a channel, the

fungus will grow fully in another and due to the even number of repetitions

will be the last to grow. If the tree grows by 1 in any channel, the fungus will

grow by 1 in any other channel and the tree will be placed in effectively the

same position.

http://softuni.foundation/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://softuni.bg/
http://softuni.foundation/
http://facebook.com/SoftwareUniversity
http://twitter.com/softunibg
http://youtube.com/SoftwareUniversity
http://plus.google.com/+SoftuniBg/
https://www.linkedin.com/school/3529173/
http://slideshare.net/softwareuniversity
http://github.com/softuni
mailto:university@softuni.bg
http://softuni.foundation/

	Softuniada 2019
	1. Digitivision
	Input
	Output
	Constraints
	Examples

	2. Crocs
	Input
	Output
	Constraints
	Examples

	3. Nexus
	Input
	Output
	Constraints
	Examples

	4. Elemelons
	Input
	Output
	Constraints
	Examples

	5. Grid Voyage
	Input
	Output
	Constraints
	Examples

	6. Tri-Force
	Input
	Output
	Constraints
	Examples

	7. Undefined
	Input
	Output
	Constraints
	Examples

	8. Rooks
	Input
	Output
	Constraints
	Examples

	9. Moneypoly
	Input
	Output
	Constraints
	Examples

	10. Plants
	Input
	Output
	Illustration
	Restrictions
	Examples

