
Exercises: Dictionaries, Lambda and LINQ
Check your solutions here: https://judge.softuni.bg/Contests/Compete/Index/882#0.
Count Real Numbers
Read a list of real numbers and print them in ascending order along with their number of occurrences.
Examples
	Input
	Output
	
	Input
	Output
	
	Input
	Output

	8 2.5 2.5 8 2.5
	2.5 -> 3
8 -> 2
	
	1.5 5 1.5 3
	1.5 -> 2
3 -> 1
5 -> 1
	
	-2 0.33 0.33 2
	-2 -> 1
0.33 -> 2
2 -> 1

Hints
· Use SortedDictionary<double, int> named counts.
· Pass through each input number num and increase counts[num] (when num exists in the dictionary) or assign counts[num] = 1 (when num does not exist in the dictionary).
· Pass through all numbers num in the dictionary (counts.Keys) and print the number num and its count of occurrences counts[num].
Odd Occurrences
Write a program that extracts from a given sequence of words all elements that present in it odd number of times (case-insensitive).
· Words are given in a single line, space separated.
· Print the result elements in lowercase, in their order of appearance.
Examples
	Input
	Output

	Java C# PHP PHP JAVA C java
	java, c#, c

	3 5 5 hi pi HO Hi 5 ho 3 hi pi
	5, hi

	a a A SQL xx a xx a A a XX c
	a, sql, xx, c

Hints
· Use a dictionary (string int) to count the occurrences of each word (just like in the previous problem).
· Pass through all key-value pairs in the dictionary and append to the results list all keys that have odd value.
· Print the results list.
Phonebook
Write a program that receives some info from the console about people and their phone numbers. Each entry should have just one name and one number (both of them strings).
On each line, you will receive some of the following commands:
· A {name} {phone} – adds entry to the phonebook. In case of trying to add a name that is already in the phonebook you should change the existing phone number with the new one provided.
· S {name} – searches for a contact by given name and prints it in format "{name} -> {number}". In case the contact isn't found, print "Contact {name} does not exist.".
· END – stop receiving more commands.
Examples
	Input
	Output

	A Nakov 0888080808
S Mariika
S Nakov
END
	[bookmark: OLE_LINK9][bookmark: OLE_LINK10]Contact Mariika does not exist.
[bookmark: OLE_LINK1]Nakov -> 0888080808

	A Nakov +359888001122
A RoYaL(Ivan) 666
A Gero 5559393
A Simo 02/987665544
S Simo
S simo
S RoYaL
S RoYaL(Ivan)
END
	Simo -> 02/987665544
[bookmark: OLE_LINK2]Contact simo does not exist.
Contact RoYaL does not exist.
RoYaL(Ivan) -> 666

	A Misho +359883123
A Misho 02/3123
S Misho
END
	Misho -> 02/3123

Hints
· Parse the commands by splitting by space. Execute the commands until “END” is reached.
· Store the phonebook entries in Dictionary<string, string> with key {name} and value {phone number}.
 Phonebook Upgrade
Add functionality to the phonebook from the previous task to print all contacts ordered lexicographically when receive the command “ListAll”.

Examples
	Input
	Output

	A Nakov +359888001122
A RoYaL(Ivan) 666
A Gero 5559393
A Simo 02/987665544
ListAll
END
	[bookmark: OLE_LINK3]Gero -> 5559393
Nakov -> +359888001122
RoYaL(Ivan) -> 666
Simo -> 02/987665544

Hints
1. Variant I (slower): Sort all entries in the dictionary by key and print them.
2. Variant II (faster): Keep the entries in more appropriate data structure that will keep them in sorted order for better performance.
A Miner Task
You are given a sequence of strings, each on a new line. Every odd line on the console is representing a resource (e.g. Gold, Silver, Copper, and so on), and every even – quantity. Your task is to collect the resources and print them each on a new line.
Print the resources and their quantities in format:
{resource} –> {quantity}
The quantities inputs will be in the range [1 … 2 000 000 000]
Examples
	Input
	Output
	
	Input
	Output

	Gold
155
Silver
10
Copper
17
stop
	[bookmark: OLE_LINK4]Gold -> 155
Silver -> 10
Copper -> 17
	
	gold
155
silver
10
copper
17
gold
15
stop
	gold -> 170
silver -> 10
copper -> 17

Fix Emails
[bookmark: __DdeLink__998_1408925518]You are given a sequence of strings, each on a new line, until you receive the “stop” command. The first string is the name of a person. On the second line, you will receive their email. Your task is to collect their names and emails, and remove emails whose domain ends with "us" or "uk" (case insensitive). Print:
{name} – > {email}

Examples
	Input
	Output

	Ivan
ivanivan@abv.bg
Petar Ivanov
petartudjarov@abv.bg
Mike Tyson
myke@gmail.us
stop
	[bookmark: OLE_LINK5]Ivan -> ivanivan@abv.bg
Petar Ivanov -> petartudjarov@abv.bg

Hands of Cards
You are given a sequence of people and for every person what cards he draws from the deck. The input will be separate lines in the format:
· {personName}: {PT, PT, PT,… PT}
Where P (2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A) is the power of the card and T (S, H, D, C) is the type. The input ends when a "JOKER" is drawn. The name can contain any ASCII symbol except ':'. The input will always be valid and in the format described, there is no need to check it.
A single person cannot have more than one card with the same power and type, if they draw such a card they discard it. The people are playing with multiple decks. Each card has a value that is calculated by the power multiplied by the type. Powers 2 to 10 have the same value and J to A are 11 to 14. Types are mapped to multipliers the following way (S -> 4, H-> 3, D -> 2, C -> 1).
Finally print out the total value each player has in his hand in the format:
· {personName}: {value}
Examples
	Input
	Output

	Pesho: 2C, 4H, 9H, AS, QS
Slav: 3H, 10S, JC, KD, 5S, 10S
Peshoslav: QH, QC, QS, QD
Slav: 6H, 7S, KC, KD, 5S, 10C
Peshoslav: QH, QC, JS, JD, JC
Pesho: JD, JD, JD, JD, JD, JD
JOKER
	[bookmark: OLE_LINK15][bookmark: OLE_LINK16]Pesho: 167
Slav: 175
Peshoslav: 197

* User Logs
Marian is a famous system administrator. The person to overcome the security of his servers has not yet been born. However, there is a new type of threat where users flood the server with messages and are hard to be detected since they change their IP address all the time. Well, Marian is a system administrator and is not so into programming. Therefore, he needs a skillful programmer to track the user logs of his servers. You are the chosen one to help him!
You are given an input in the format:
· IP=(IP.Address) message=(A&sample&message) user=(username)
Your task is to parse the IP and the username from the input and for every user, you have to display every IP from which the corresponding user has sent a message and the count of the messages sent with the corresponding IP. In the output, the usernames must be sorted alphabetically while their IP addresses should be displayed in the order of their first appearance. The output should be in the following format:
	username:
IP => count, IP => count.

For example, given the following input:
· “IP=192.23.30.40 message='Hello&derps.' user=destroyer”,
You will have to get the username destroyer and the IP 192.23.30.40 and display it in the following format:
	destroyer:
192.23.30.40 => 1.

The username destroyer has sent a message from IP 192.23.30.40 once.
Check the examples below. They will further clarify the assignment.
Input
The input comes from the console as varying number of lines. You have to parse every command until the command that follows is end. The input will be in the format displayed above, there is no need to check it explicitly.
Output
For every user found, you have to display each log in the format:
username:
IP => count, IP => count…
The IP addresses must be split with a comma, and each line of IP addresses must end with a dot.
Constraints
· The number of commands will be in the range [1..50]
· The IP addresses will be in the format of either IPv4 or IPv6.
· The messages will be in the format: This&is&a&message
· The username will be a string with length in the range [3..50]
· Time limit: 0.3 sec. Memory limit: 16 MB.
Examples
	Input
	Output

	IP=192.23.30.40 message='Hello&derps.' user=destroyer
IP=192.23.30.41 message='Hello&yall.' user=destroyer
IP=192.23.30.40 message='Hello&hi.' user=destroyer
IP=192.23.30.42 message='Hello&Dudes.' user=destroyer
end
	destroyer:
192.23.30.40 => 2, 192.23.30.41 => 1, 192.23.30.42 => 1.

	IP=FE80:0000:0000:0000:0202:B3FF:FE1E:8329 message='Hey&son' user=mother
IP=192.23.33.40 message='Hi&mom!' user=child0
IP=192.23.30.40 message='Hi&from&me&too' user=child1
IP=192.23.30.42 message='spam' user=destroyer
IP=192.23.30.42 message='spam' user=destroyer
IP=192.23.50.40 message='' user=yetAnotherUsername
IP=192.23.50.40 message='comment' user=yetAnotherUsername
IP=192.23.155.40 message='Hello.' user=unknown
end
	child0:
192.23.33.40 => 1.
child1:
192.23.30.40 => 1.
destroyer:
192.23.30.42 => 2.
mother:
FE80:0000:0000:0000:0202:B3FF:FE1E:8329 => 1.
unknown:
192.23.155.40 => 1.
yetAnotherUsername:
192.23.50.40 => 2.

* Population Counter
So many people! It’s hard to count them all. But that’s your job as a statistician. You get raw data for a given city and you need to aggregate it.
On each input line, you’ll be given data in format: "city|country|population". There will be no redundant whitespaces anywhere in the input. Aggregate the data by country and by city and print it on the console.
For each country, print its total population and on separate lines, the data for each of its cities. Countries should be ordered by their total population in descending order and within each country, the cities should be ordered by the same criterion.
If two countries/cities have the same population, keep them in the order in which they were entered. Check out the examples; follow the output format strictly!
Input
· The input data should be read from the console.
· It consists of a variable number of lines and ends when the command "report" is received.
· The input data will always be valid and in the format described. There is no need to check it explicitly.
Output
· The output should be printed on the console.
· Print the aggregated data for each country and city in the format shown below.
Constraints
· The name of the city, country and the population count will be separated from each other by a pipe ('|').
· The number of input lines will be in the range [2 … 50].
· A city-country pair will not be repeated.
· The population count of each city will be an integer in the range [0 … 2 000 000 000].
· Allowed working time for your program: 0.1 seconds. Allowed memory: 16 MB.
Examples
	Input
	Output

	Sofia|Bulgaria|1000000
report
	Bulgaria (total population: 1000000)
=>Sofia: 1000000

	Input
	Output

	Sofia|Bulgaria|1
Veliko Tarnovo|Bulgaria|2
London|UK|4
Rome|Italy|3
report
	[bookmark: OLE_LINK11][bookmark: OLE_LINK12]UK (total population: 4)
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]=>London: 4
Bulgaria (total population: 3)
=>Veliko Tarnovo: 2
=>Sofia: 1
Italy (total population: 3)
=>Rome: 3

* Logs Aggregator
You are given a sequence of access logs in format <IP> <user> <duration>. For example:
· 192.168.0.11 peter 33
· 10.10.17.33 alex 12
· 10.10.17.35 peter 30
· 10.10.17.34 peter 120
· 10.10.17.34 peter 120
· 212.50.118.81 alex 46
· 212.50.118.81 alex 4
Write a program to aggregate the logs data and print for each user the total duration of his sessions and a list of unique IP addresses in format "<user>: <duration> [<IP1>, <IP2>, …]". Order the users alphabetically. Order the IPs alphabetically. In our example, the output should be the following:
· alex: 62 [10.10.17.33, 212.50.118.81]
· peter: 303 [10.10.17.34, 10.10.17.35, 192.168.0.11]
Input
The input comes from the console. At the first line a number n stays which says how many log lines will follow. Each of the next n lines holds a log information in format <IP> <user> <duration>. The input data will always be valid and in the format described. There is no need to check it explicitly.
Output
Print one line for each user (order users alphabetically). For each user print its sum of durations and all of his sessions' IPs, ordered alphabetically in format <user>: <duration> [<IP1>, <IP2>, …]. Remove any duplicated values in the IP addresses and order them alphabetically (like we order strings).
Constraints
· The count of the order lines n is in the range [1…1000].
· The <IP> is a standard IP address in format a.b.c.d where a, b, c and d are integers in the range [0…255].
· The <user> consists of only of Latin characters, with length of [1…20].
· The <duration> is an integer number in the range [1…1000].
· Time limit: 0.3 sec. Memory limit: 16 MB.
Examples
	Input
	Output

	7
192.168.0.11 peter 33
10.10.17.33 alex 12
10.10.17.35 peter 30
10.10.17.34 peter 120
10.10.17.34 peter 120
212.50.118.81 alex 46
212.50.118.81 alex 4
	alex: 62 [10.10.17.33, 212.50.118.81]
peter: 303 [10.10.17.34, 10.10.17.35, 192.168.0.11]

	2
84.238.140.178 nakov 25
84.238.140.178 nakov 35
	nakov: 60 [84.238.140.178]

* Legendary Farming
You’ve beaten all the content and the last thing left to accomplish is own a legendary item. However, it’s a tedious process and requires quite a bit of farming. Anyway, you are not too pretentious – any legendary will do. The possible items are:
· Shadowmourne – requires 250 Shards;
· Valanyr – requires 250 Fragments;
· Dragonwrath – requires 250 Motes;
Shards, Fragments and Motes are the key materials, all else is junk. You will be given lines of input, such as
2 motes 3 ores 15 stones. Keep track of the key materials - the first that reaches the 250 mark wins the race. At that point, print the corresponding legendary obtained. Then, print the remaining shards, fragments, motes, ordered by quantity in descending order, then by name in ascending order, each on a new line. Finally, print the collected junk items, in alphabetical order.
Input
· Each line of input is in format {quantity} {material} {quantity} {material} … {quantity} {material}
Output
· On the first line, print the obtained item in format {Legendary item} obtained!
· On the next three lines, print the remaining key materials in descending order by quantity
· If two key materials have the same quantity, print them in alphabetical order
· On the final several lines, print the junk items in alphabetical order
· All materials are printed in format {material}: {quantity}
· All output should be lowercase, except the first letter of the legendary
Constraints
· The quantity-material pairs are between 1 and 25 per line.
· The number of lines is in range [1..10]
· All materials are case-insensitive.
· Allowed working time: 0.25s
· Allowed memory: 16 MB
Examples
	Input
	Output

	3 Motes 5 stones 5 Shards
6 leathers 255 fragments 7 Shards
	Valanyr obtained!
fragments: 5
shards: 5
motes: 3
leathers: 6
stones: 5

	Input
	Output

	123 silver 6 shards 8 shards 5 motes
9 fangs 75 motes 103 MOTES 8 Shards
86 Motes 7 stones 19 silver
	Dragonwrath obtained!
shards: 22
motes: 19
fragments: 0
fangs: 9
silver: 123

*** Dragon Army
Heroes III is the best game ever. Everyone loves it and everyone plays it all the time. Stamat is no exclusion to this rule. His favorite units in the game are all types of dragons – black, red, gold, azure etc… He likes them so much that he gives them names and keeps logs of their stats: damage, health and armor. The process of aggregating all the data is quite tedious, so he would like to have a program doing it. Since he is no programmer, it’s your task to help him
You need to categorize dragons by their type. For each dragon, identified by name, keep information about his stats. Type is preserved as in the order of input, but dragons are sorted alphabetically by name. For each type, you should also print the average damage, health and armor of the dragons. For each dragon, print his own stats.
There may be missing stats in the input, though. If a stat is missing you should assign it default values. Default values are as follows: health 250, damage 45, and armor 10. Missing stat will be marked by null.
The input is in the following format {type} {name} {damage} {health} {armor}. Any of the integers may be assigned null value. See the examples below for better understanding of your task.
If the same dragon is added a second time, the new stats should overwrite the previous ones. Two dragons are considered equal if they match by both name and type.
Input
· On the first line, you are given number N -> the number of dragons to follow
· On the next N lines, you are given input in the above described format. There will be single space separating each element.
Output
· Print the aggregated data on the console
· For each type, print average stats of its dragons in format {Type}::({damage}/{health}/{armor})
· Damage, health and armor should be rounded to two digits after the decimal separator
· For each dragon, print its stats in format -{Name} -> damage: {damage}, health: {health}, armor: {armor}
Constraints
· N is in range [1…100]
· The dragon type and name are one word only, starting with capital letter.
· Damage health and armor are integers in range [0 … 100000] or null
Examples
	Input
	Output

	5
Red Bazgargal 100 2500 25
Black Dargonax 200 3500 18
Red Obsidion 220 2200 35
Blue Kerizsa 60 2100 20
Blue Algordox 65 1800 50
	[bookmark: OLE_LINK6][bookmark: OLE_LINK7]Red::(160.00/2350.00/30.00)
[bookmark: OLE_LINK8]-Bazgargal -> damage: 100, health: 2500, armor: 25
-Obsidion -> damage: 220, health: 2200, armor: 35
Black::(200.00/3500.00/18.00)
-Dargonax -> damage: 200, health: 3500, armor: 18
Blue::(62.50/1950.00/35.00)
-Algordox -> damage: 65, health: 1800, armor: 50
-Kerizsa -> damage: 60, health: 2100, armor: 20

	Input
	Output

	4
Gold Zzazx null 1000 10
Gold Traxx 500 null 0
Gold Xaarxx 250 1000 null
Gold Ardrax 100 1055 50
	Gold::(223.75/826.25/17.50)
-Ardrax -> damage: 100, health: 1055, armor: 50
-Traxx -> damage: 500, health: 250, armor: 0
-Xaarxx -> damage: 250, health: 1000, armor: 10
-Zzazx -> damage: 45, health: 1000, armor: 10

[image: C:\Users\chris\AppData\Local\Temp\Rar$DRa2604.45037\SoftUniFoundation_Logo_OneLine@2x.png][image: C:\Users\chris\AppData\Local\Temp\Rar$DRa2604.40128\SoftUniFoundation_Logo_OneLine_White@2x.png]Page 1 of 9
Follow us:
© Software University Foundation. This work is licensed under the CC-BY-NC-SA license.
[image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:]

image5.png
€
| 1

image6.png
€

image7.png
You

)

image8.png

image9.png

image1.png
SoftUni
Foundation

image10.png

image11.png

image12.png

image2.png
o 2 >
<> SOLUNT

NG ARG

image3.png
Software
University

image4.png
SoftUni
Foundation

