

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 1 of 7

Exercises: Reflection
This document defines the exercises for the "Java Advanced" course @ Software University. Please submit your

solutions (source code) to all below-described problems in Judge.

 Harvesting Fields

You are given a RichSoilLand class with lots of fields (look at the provided skeleton). Like the good farmer you

are, you must harvest them. Harvesting means that you must print each field in a certain format (see output).

Input

You will receive a maximum of 100 lines with one of the following commands:

• private - print all private fields

• protected - print all protected fields

• public - print all public fields

• all - print ALL declared fields

• HARVEST - end the input

Output

For each command, you must print the fields that have the given access modifier as described in the input section.

The format in which the fields should be printed is:

"{access modifier} {field type} {field name}"

Examples

Input Output

protected
HARVEST

protected String testString
protected double aDouble
protected byte testByte
protected StringBuilder aBuffer
protected BigInteger testBigNumber
protected float testFloat
protected Object testPredicate
protected Object fatherMotherObject
protected String moarString
protected Exception inheritableException
protected Stream moarStreamz

private
public
private
HARVEST

private int testInt
private long testLong
private Calendar aCalendar
private char testChar
private BigInteger testBigInt
private Thread aThread
private Object aPredicate
private Object hiddenObject
private String anotherString
private Exception internalException
private Stream secretStream
public double testDouble
public String aString

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://softuni.bg/modules/59/java-advanced
https://judge.softuni.bg/Contests/1605/Reflection-Exercises

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 2 of 7

public StringBuilder aBuilder
public short testShort
public byte aByte
public float aFloat
public Thread testThread
public Object anObject
public int anotherIntBitesTheDust
public Exception justException
public Stream aStream
private int testInt
private long testLong
private Calendar aCalendar
private char testChar
private BigInteger testBigInt
private Thread aThread
private Object aPredicate
private Object hiddenObject
private String anotherString
private Exception internalException
private Stream secretStream

all
HARVEST

private int testInt
public double testDouble
protected String testString
private long testLong
protected double aDouble
public String aString
private Calendar aCalendar
public StringBuilder aBuilder
private char testChar
public short testShort
protected byte testByte
public byte aByte
protected StringBuilder aBuffer
private BigInteger testBigInt
protected BigInteger testBigNumber
protected float testFloat
public float aFloat
private Thread aThread
public Thread testThread
private Object aPredicate
protected Object testPredicate
public Object anObject
private Object hiddenObject
protected Object fatherMotherObject
private String anotherString
protected String moarString
public int anotherIntBitesTheDust
private Exception internalException
protected Exception inheritableException
public Exception justException
public Stream aStream
protected Stream moarStreamz
private Stream secretStream

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 3 of 7

 Black Box Integer

You are helping a buddy of yours who is still in the OOP Basics course - his name is John. He is rather slow and made

a class with all private members. Your tasks are to instantiate an object from his class (always with start value 0) and

then invoke the different methods it has. Your restriction is to not change anything in the class itself (consider it a

black box). You can look at his class but don't touch anything! The class itself is called BlackBoxInt. It is a wrapper

for the int primitive. The methods it has are:

Input

The input will consist of lines in the form:

"{command name}_{value}"

Input will always be valid and in the format described, so there is no need to check it explicitly. You stop receiving

input when you encounter the command "END".

Output

Each command (except the "END" one) should print the current value of innerValue of the BlackBoxInt object

you instantiated. Don't cheat by overriding toString in the class - you must get the value from the private field.

Examples

Input Output

add_999999
subtract_19
divide_4
multiply_2
rightShift_1
leftShift_3
END

999999
999980
249995
499990
249995
1999960

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 4 of 7

subtract_3000
add_556677
add_889915
rightShift_3
leftShift_3
END

-3000
553677
1443592
180449
1443592

 BarracksWars – A New Factory

You are given a small console-based project called Barracks (the code for it is included in the provided skeleton).

The general functionality of the project is adding new units to its repository and printing a report with statistics

about the units currently in the repository. First, let's go over the original task before the project was created:

Input

The input consists of commands each on a separate line. Commands that execute the functionality are:

• add {Archer/Swordsman/Pikeman/{…}} - adds a unit to the repository

• report - prints a lexicological ordered statistic about the units in the repository

• fight - ends the input

Output

Each command except fight should print output on the console.

• add should print: "{Archer/Swordsman/Pikeman/{…}} added!"

• report should print all the info in the repository in the format: "{UnitType} -> {UnitQuantity}",

sorted by UnitType

Constraints

• Input will consist of no more than 1000 lines.

• report command will never be given before any valid add command was provided.

Your Task

1) You have to study the code of the project and figure out how it works. However, there are parts of it that are not

implemented (left with TODOs (TODO window will be useful)). You must implement the functionality of the

createUnit method in the UnitFactoryImpl class so that it creates a unit based on the unit type received as a

parameter. Implement it in such a way that whenever you add a new unit it will be creatable without the need to

change anything in the UnitFactoryImpl class (psst - use reflection). You can use the approach called Simple Factory.

2) Add two new unit classes (there will be tests that require them) - Horseman with 50 health and 10 attacks and

Gunner with 20 health and 20 attacks.

If you do everything correctly for this problem, you should write code only in the factories and units packages.

Examples

Input Output

add Swordsman
add Archer
add Pikeman
report
add Pikeman

Swordsman added!
Archer added!
Pikeman added!
Archer -> 1
Pikeman -> 1

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 5 of 7

add Pikeman
report
fight

Swordsman -> 1
Pikeman added!
Pikeman added!
Archer -> 1
Pikeman -> 3
Swordsman -> 1

add Pikeman
add Pikeman
add Gunner
add Horseman
add Archer
add Gunner
add Gunner
add Horseman
report
fight

Pikeman added!
Pikeman added!
Gunner added!
Horseman added!
Archer added!
Gunner added!
Gunner added!
Horseman added!
Archer -> 1
Gunner -> 3
Horseman -> 2
Pikeman -> 2

 BarracksWars – the Commands Strike Back

As you might have noticed commands in the project from Problem 3 are implemented via a switch case with

method calls in the Engine class. Although this approach works it is flawed when you add a new command because

you have to add a new case for it. In some projects, you might not have access to the engine and this would not

work. Imagine this project will be outsourced and the outsourcing firm will not have access to the engine. Make it so

whenever they want to add a new command they won't have to change anything in the Engine.

To do so employ the design pattern called Command Pattern. Here is how the base (abstract) command should look

like:

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://www.baeldung.com/java-command-pattern

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 6 of 7

Notice how all commands that extend this one will have both a Repository and a UnitFactory although not all

of them need these. Leave it like this for this problem, because for the reflection to work we need all constructors to

accept the same parameters. We will see how to go around this issue in Problem 5.

Once you've implemented the pattern add a new command. It will have the following syntax:

• retire {UnitType} - All it has to do is remove a unit of the provided type from the repository.

o If there are no such units currently in the repository print: "No such units in repository."

o If there is such a unit currently in the repository, print: "{UnitType} retired!"

To implement this command, you will also have to implement a corresponding method in the UnitRepository.

If you do everything correctly for this problem, you should write/refactor code only in the core and data packages.

Examples

Input Output

retire Archer
add Pikeman
add Pikeman
add Gunner
add Horseman
add Archer
add Gunner
add Gunner
add Horseman
report
retire Gunner
retire Archer
report
retire Swordsman
retire Archer
fight

No such units in repository.
Pikeman added!
Pikeman added!
Gunner added!
Horseman added!
Archer added!
Gunner added!
Gunner added!
Horseman added!
Archer -> 1
Gunner -> 3
Horseman -> 2
Pikeman -> 2
Gunner retired!
Archer retired!
Archer -> 0
Gunner -> 2
Horseman -> 2
Pikeman -> 2
No such units in repository.
No such units in repository.

add Pikeman
add Gunner
add Horseman
report
add Gunner
add Pikeman
retire Pikeman
retire Gunner
report
fight

Pikeman added!
Gunner added!
Horseman added!
Gunner -> 1
Horseman -> 1
Pikeman -> 1
Gunner added!
Pikeman added!
Pikeman retired!
Gunner retired!
Gunner -> 1
Horseman -> 1
Pikeman -> 1

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 7 of 7

 * BarracksWars – Return of the Dependencies

In the final part of this epic problem trilogy, we will resolve the issue where all Commands received all utility classes

as parameters in their constructors. We can accomplish this by using an approach called dependency injection

container. This approach is used in many frameworks like Spring for instance.

We will do a little twist on that approach. Remove all fields from the abstract command except the data. Instead,

put whatever fields each command needs in the concrete class. Create an annotation called Inject and make it so it

can be used only on fields. Put the annotation over the fields we need to set through reflection. Once you've

prepared all of this, write the necessary reflection code in the Command Interpreter (which you should have

refactored out from the engine in Problem 4).

Use the tests from Problem 4 to test your solution.

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

	Exercises: Reflection
	1. Harvesting Fields
	Input
	Output
	Examples

	2. Black Box Integer
	Input
	Output
	Examples

	3. BarracksWars – A New Factory
	Input
	Output
	Constraints
	Examples

	4. BarracksWars – the Commands Strike Back
	Examples

	5. * BarracksWars – Return of the Dependencies

