

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 1 of 8

Exercises: Encapsulation
This document defines the exercises for the "Java Advanced" course @ Software University. Please submit your

solutions (source code) to all below-described problems in Judge.

1. Class Box

You are given a geometric figure Box with fields length, width, and height. Model a class Box that can be

instantiated by the same three parameters. Expose to the outside world only methods for its surface area, lateral

surface area, and its volume (formulas: http://www.mathwords.com/r/rectangular_parallelepiped.htm).

On the first three lines, you will get the length, width, and height. On the next three lines print the surface area,

lateral surface area, and the volume of the box.

A box’s side should not be zero or a negative number. Add data validation for each parameter given to the

constructor. Make a private setter that performs data validation internally.

Box

- length: double

- width: double

- height: double

+ Box (double length, double width, double height)

- setLength(double): void

- setWidth(double): void

- setHeight(double): void

+ calculateSurfaceArea (): double

+ calculateLateralSurfaceArea (): double

+ calculateVolume (): double

Examples

Input Output

2

-3

4

Width cannot be zero or negative.

2

3

4

Surface Area - 52.00

Lateral Surface Area - 40.00

Volume – 24.00

1.3

1

6

Surface Area - 30.20

Lateral Surface Area - 27.60

Volume - 7.80

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://softuni.bg/modules/59/java-advanced
https://judge.softuni.bg/Contests/1536/Encapsulation-Exercises
http://www.mathwords.com/r/rectangular_parallelepiped.htm

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 2 of 8

2. Animal Farm

You should be familiar with encapsulation already. For this problem, you’ll need to create a class called Chicken.

Chicken should contain several fields, a constructor, and several methods. Your task is to encapsulate or hide anything

that is not intended to be viewed or modified from outside the class.

Chicken lives for 15 years. Chicken has a name for sure, at least 1 symbol long. Chicken producing eggs:

• First 6 years it produces 2 eggs per day [0 - 5].

• Next 6 years it produces 1 egg per day [6 - 11].

• And after that, it produces 0.75 eggs per day.

Step 1. Encapsulate Fields

Fields should be private. Leaving fields open for modification from outside the class is potentially dangerous. Make all

fields in the Chicken class private.

In case the value inside a field is needed elsewhere, use getters to reveal it.

Step 2. Ensure Classes Have a Correct State

Having getters and setters is useless if you don’t use them. The Chicken constructor modifies the fields directly which

is wrong when there are suitable setters available. Modify the constructor to fix this issue.

Step 3. Validate Data Properly

Validate the chicken’s name (it cannot be null, empty, or whitespace). In case of an invalid name, print the exception

message "Name cannot be empty."

Validate the age properly, minimum and maximum age are provided, make use of them. In case of invalid age, print

the exception message "Age should be between 0 and 15."

Step 4. Hide Internal Logic

If a method is intended to be used only by descendant classes or internally to perform some action, there is no point

in keeping them public. The calculateProductPerDay() method is used by the productPerDay() public method. This

means the method can safely be hidden inside the Chicken class by declaring it private.

Step 4. Submit Code to Judge

Submit your code as a zip file in Judge. Make sure you have a public Main class with a public static void main

method in it.

Chicken

- name: String

- age: int

+ Chicken(String, int)

- setName(String) : void

- setAge (int): void

+ productPerDay (): double

+ toString(): Override

- calculateProductPerDay() : double

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 3 of 8

Examples

Input Output

Chichi

10

Chicken Chichi (age 10) can produce 1.00 eggs per day.

Chichi

17

Age should be between 0 and 15.

Choko

6

Chicken Choko (age 6) can produce 1.00 eggs per day.

3. Shopping Spree

Create two classes: class Person and class Product. Each person should have a name, money, and a bag of products.

Each product should have a name and cost. The name cannot be an empty string. Be careful about white space in

the name. Money and cost cannot be a negative number.

Product

- name: String

- cost: double

+ Product (String, double)

- setCost (double): void

- setName (String): void

+ getName(): String

+ getCost (): double

Create a program in which each command corresponds to a person buying a product. If the person can afford a

product add it to his bag. If a person doesn’t have enough money, print an appropriate exception message:

"{Person name} can't afford {Product name}"

In the first two lines, you are given all people and all products. After all, purchases print every person in the order of

appearance and all products that he has bought also in order of appearance. If nothing is bought, print:

"{Person name} - Nothing bought".

Read commands till you find the line with the "END" command. In case of invalid input (negative money exception

message: "Money cannot be negative") or empty name: (empty name exception message "Name cannot be

empty") break the program with an appropriate message. See the examples below:

Examples

Input Output

Peter=11;George=4

Bread=10;Milk=2

Peter Bread

George Milk

Peter bought Bread

George bought Milk

George bought Milk

Peter can't afford Milk

Person

- name: String

- money: double

- products: List<Product>

+ Person (String, double)

- setName (String): void

- setMoney (double): void

+ buyProduct (Product): void

+ getName(): String

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 4 of 8

George Milk

Peter Milk

END

Peter - Bread

George - Milk, Milk

Maria=0

Coffee=2

Maria Coffee

END

Maria can't afford Coffee

Maria – Nothing bought

John=-3

Peppers=1

John Peppers

END

Money cannot be negative

Hint

Judge does not work with isBlank() method. You can use trim().isEmpty().

4. Pizza Calories

A Pizza is made of dough and different toppings. You should model a class Pizza which should have a name, dough,

and toppings as fields. Every type of ingredient should have its class.

Pizza

- name: String

- dought: Dough

- toppings: List<Topping>

+ Piza (String, int numberOfToppings)

- setToppings(int) : void

- setName(String) : void

+ setDough(Dough) : void

+ getName(): String

+ addTopping (Topping) : void

+ getOverallCalories () : double

Every ingredient has different fields: the dough can be white or wholegrain and in addition, it can be crispy, chewy,

or homemade. The toppings can be of type meat, veggies, cheese, or sauce. Every ingredient should weigh grams

and a method for calculating its calories according to its type. Calories per gram are calculated through modifiers.

Every ingredient has 2 calories per gram as a base and a modifier that gives the exact calories.

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 5 of 8

Topping

- toppingType: String

- weight: double

+ Topping (String, double)

- setToppingType (String): void

- setWeight (double): void

+ calculateCalories (): double

Your job is to model the classes in such a way that they are properly encapsulated and to provide a public method

for every pizza that calculates its calories according to the ingredients it has.

Dough Modifiers Toppings Modifiers

• White – 1.5;

• Wholegrain – 1.0;

• Crispy – 0.9;

• Chewy – 1.1;

• Homemade – 1.0;

• Meat – 1.2;

• Veggies – 0.8;

• Cheese – 1.1;

• Sauce – 0.9;

For example, the white dough has a modifier of 1.5, a chewy dough has a modifier of 1.1, which means that a white

chewy dough weighing 100 grams will have (2 * 100) * 1.5 * 1.1 = 330.00 total calories.

For example, meat has a modifier of 1.2, which means that meat weighing 50 grams will have (2 * 50) * 1.2 = 120.00

total calories.

Data Validation

Data Validation must be in the order of the Input Data.

• If an invalid flour type or an invalid baking technique is given an exception is thrown with the message

"Invalid type of dough.".

• If dough weight is outside of the range [1..200] throw an exception with the message "Dough weight

should be in the range [1..200]."

• If topping is not one of the provided types throw an exception with the message "Cannot place {name

of invalid argument} on top of your pizza."

• If topping weight is outside of the range [1..50] throw an exception with the message "{Topping type

name} weight should be in the range [1..50].".

• If the name of the pizza is empty, only whitespace or longer than 15 symbols throw an exception with the

message "Pizza name should be between 1 and 15 symbols.".

• If a number of toppings are outside of the range [0..10] throw an exception with the message "Number of

toppings should be in range [0..10].".

The input for a pizza consists of several lines:

Dough

- flourType: String

- bakingTechnique: String

- weight: double

+ Dought (String, String, double)

- setWeight(double): void

- setFlourType(String): void

- setBakingTechnique(String): void

+ calculateCalories (): double

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 6 of 8

• On the first line is the pizza name and the number of toppings it has in the format:

Pizza {pizzaName} {numberOfToppings}

• On the second line you will get input for the dough in the format:

Dough {flourType} {bakingTechnique} {weightInGrams}

• On the next lines, you will receive every topping the pizza has, until an"END" command is given:

Topping {toppingType} {weightInGrams}

If the creation of the pizza was successfully printed on a single line the name of the pizza and the total calories it has

rounded to the second digit after the decimal point.

Examples

Input Output

Pizza Meatless 2

Dough Wholegrain Crispy 100

Topping Veggies 50

Topping Cheese 50

END

Meatless - 370.00

Pizza Bulgarian 20

Dough Type500 Bulgarian 100

Topping Cheese 50

Topping Cheese 50

Topping Salami 20

Topping Meat 10

END

Number of toppings should be in range [0..10].

Pizza Bulgarian 2

Dough Type500 Bulgarian 100

Topping Cheese 50

Topping Cheese 50

Topping Salami 20

Topping Meat 10

END

Invalid type of dough.

Pizza Bulgarian 2

Dough White Chewy 100

Topping Parmesan 50

Topping Cheese 50

Topping Salami 20

Topping Meat 10

END

Cannot place Parmesan on top of your pizza.

5. **Football Team Generator

A football team has a variable number of players, a name, and a rating.

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 7 of 8

Team

- name: String

- players: List<Player>

+ Team (String)

- setName(String) : void

+ getName(): String

+ addPlayer(Player) : void

+ removePlayer(String) : void

+ getRating() : double

A player has a name and stats which are the basis for his skill level. The stats a player has are endurance, sprint,

dribble, passing, and shooting. Each stat can be in the range [0..100]. The overall skill level of a player is calculated

as the average of his stats. Only the name of a player and his stats should be visible to all of the outside world.

Everything else should be hidden.

Player

- name: String

- endurance: int

- sprint: int

- dribble: int

- passing: int

- shooting: int

+ Player (String, int, int, int, int, int)

- setName(String) : void

+ getName(): String

- setEndurance (int) : void

- setSprint (int) : void

- setDribble (int) : void

- setPassing (int) : void

- setShooting (int) : void

+ overallSkillLevel() : double

A team should expose a name, a rating (calculated by the average skill level of all players in the team), and methods

for adding and removing players.

Your task is to model the team and the players following the proper principles of Encapsulation. Expose only the

fields that need to be visible and validate data appropriately.

Input

Your application will receive commands until the "END" command is given. The command can be one of the

following:

• "Team;{TeamName}" – add a new team

• "Add;{TeamName};{PlayerName};{Endurance};{Sprint};{Dribble};{Passing};{Shooting}

" – add a new player to the team

• "Remove;{TeamName};{PlayerName}" – remove the player from the team

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 8 of 8

• "Rating;{TeamName}" – print the team rating, rounded to the closest integer

Data Validation

• A name cannot be null, empty, or white space. If not, print: "A name should not be empty."

• Stats should be in the range [0..100]. If not, print: "{Stat name} should be between 0 and 100."

• If you receive a command to remove a missing player, print: "Player {Player name} is not in

{Team name} team."

• If you receive a command to add a player to a missing team, print: "Team {team name} does not

exist."

• If you receive a command to show stats for a missing team, print: "Team {team name} does not

exist."

Examples

Input Output

Team;Arsenal

Add;Arsenal;Kieran_Gibbs;75;85;84;92;67

Add;Arsenal;Aaron_Ramsey;95;82;82;89;68

Remove;Arsenal;Aaron_Ramsey

Rating;Arsenal

END

Arsenal – 81

Team;Arsenal

Add;Arsenal;Kieran_Gibbs;75;85;84;92;67

Add;Arsenal;Aaron_Ramsey;195;82;82;89;68

Remove;Arsenal;Aaron_Ramsey

Rating;Arsenal

END

Endurance should be between 0 and 100.

Player Aaron_Ramsey is not in Arsenal team.

Arsenal - 81

Team;Arsenal

Rating;Arsenal

END

Arsenal – 0

about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

	Exercises: Encapsulation
	1. Class Box
	Examples

	2. Animal Farm
	Step 1. Encapsulate Fields
	Step 2. Ensure Classes Have a Correct State
	Step 3. Validate Data Properly
	Step 4. Hide Internal Logic
	Step 4. Submit Code to Judge
	Examples

	3. Shopping Spree
	Examples
	Hint

	4. Pizza Calories
	Data Validation
	Examples

	5. **Football Team Generator
	Input
	Data Validation
	Examples

