

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 1 of 9

Lab: Graph Theory, Traversal, and Shortest Paths
This document defines the lab for "Algorithms – Fundamentals (C#)" course @ Software University.

Please submit your solutions (source code) of all below-described problems in Judge.

1. Connected Components
The first part of this lab aims to implement the DFS algorithm (Depth-First-Search) to traverse a graph and find its

connected components (nodes connected either directly, or through other nodes). The graph nodes are numbered

from 0 to n-1. The graph comes from the console in the following format:

• First line: number of lines n

• Next n lines: list of child nodes for the nodes 0 … n-1 (separated by a space)

Print the connected components in the same format as in the examples below.

Example

Input Graph Output

9

3 6

3 4 5 6

8

0 1 5

1 6

1 3

0 1 4

2

Connected component: 6 4 5 1 3 0

Connected component: 8 2

Connected component: 7

0 (empty graph)

Hints

DFS Algorithm

First, create a bool array that will be with the size of your graph:

Next, implement the DFS algorithm (Depth-First-Search) to traverse all nodes connected to the specified start node:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://softuni.bg/trainings/4175/algorithms-fundamentals-with-c-sharp-may-2023
https://judge.softuni.org/Contests/2563/Graph-Theory-Traversal-and-Shortest-Paths-Lab

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 2 of 9

Test

Invoke the DFS() method starting from node 0. It should print the connected component, holding the node 0:

Run the code above by [Ctrl + F5]. It should print the first connected component in the graph, holding the node 0:

Find All Components

We want to find all connected components. We can just run the DFS algorithm for each node taken as a start (which

was not visited already):

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 3 of 9

Now let's test the above code. Just call it from the main method:

The output is as expected. It prints all connected components in the graph:

Read Input

Let's implement the data entry logic (read the graph from the console). We already have the method below:

Modify the main method to read the graph from the console instead of using the hard-coded graph:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 4 of 9

Now test the solution. Run it by [Ctrl] + [F5]. Enter a sample graph data and check the output.

2. Source Removal Topological Sorting

We’re given a directed graph which means that if node A is connected to node B and the vertex is directed from A to

B, we can move from A to B, but not the other way around, i.e. we have a one-way street. We’ll call A "source" or

"predecessor" and B – "child".

Let’s consider the tasks a SoftUni student needs to perform during an exam – "Read description", "Receive input",

"Print output", etc.

Some of the tasks depend on other tasks – we cannot print the output of a problem before we get the input. If all

such tasks are nodes in a graph, a directed vertex will represent dependency between two tasks, e.g. if A -> B (A is

connected to B and the direction is from A to B), this means B cannot be performed before completing A first. Having

all tasks as nodes and the relationships between them as vertices, we can order the tasks using topological sorting.

After the sorting procedure, we’ll obtain a list showing all tasks in the order in which they should be performed. Of

course, there may be more than one such order, and there usually is, but in general, the tasks which are less dependent

on other tasks will appear first in the resulting list.

For this problem, you need to implement topological sorting over a directed graph of strings.

Input

• On the first line, you will receive an integer n –nodes count.

• On the next n lines, you will receive nodes in the following format: "{key} -> {children1},

{children2},… {childrenN}".

o It is possible some of the keys to not having any children.

Output

• If the sorting is possible then print "Topological sorting: {sortedKey1}, {sortedKey2},

…{sortedKeyN}".

• Otherwise, print "Invalid topological sorting".

Example

Input Picture Output

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 5 of 9

6

A -> B, C

B -> D, E

C -> F

D -> C, F

E -> D

F ->

Topological sorting: A, B, E,
D, C, F

5

IDEs -> variables, loops

variables ->
conditionals, loops,
bits

conditionals -> loops

loops -> bits

bits ->

Topological sorting: IDEs,
variables, conditionals,
loops, bits

2

A -> B

B -> A

Invalid topological sorting

We’ll solve this using two different algorithms – source removal and DFS.

Source Removal Algorithm

The source removal algorithm is pretty simple – it finds the node which isn’t dependent on any other node and

removes it along with all vertices connected to it.

We continue removing each node recursively until we’re done and all nodes have been removed. If there are nodes

in the graph after the algorithm is complete, there are circular dependencies (we will throw an exception).

Compute Predecessors

To efficiently remove a node at each step, we need to know the number of predecessors for each node. To do this,

we will calculate the number of predecessors beforehand.

Create a dictionary to store the predecessor count for each node:

Compute the predecessor count for each node:

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 6 of 9

Remove Independent Nodes

Now that we know how many predecessors each node has, we just need to:

1. Find a node without predecessors and remove it

2. Repeat until we’re done

We’ll keep the result in a list and start a loop that will stop when there is no independent node:

Finding a source can be simplified with LINQ. We just need to check if such a node exists; if not, we break the loop:

Removing a node involves several steps:

1. All its child nodes lose a predecessor -> decrement the count of predecessors for each of the children

2. Remove the node from the graph

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 7 of 9

3. Add the node to the list of removed nodes

Finally, print the sorted nodes.

Detect Cycles

If we ended the loop and the predecessorCount still has nodes, this means there is a cycle. Just add a check after

the while loop and print the proper message if the predecessorCount is not empty:

DFS Topological Sorting

DFS Algorithm

The second algorithm we’ll use is DFS. You can comment on the method you just implemented and rewrite it to use

the same unit tests.

For this one, we’ll need the following collections:

The DFS topological sort is simple – loop through each node. We create a linked list for all sorted nodes because the

DFS will find them in reverse order (we will add nodes in the beginning):

The DFS method shouldn’t do anything if the node is already visited; otherwise, it should mark the node as visited

and add it to the list of sorted nodes. It should also do this for its children (if there are any):

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 8 of 9

Note that we add the node to the result after we traverse its children. This guarantees that the node will be added

after the nodes that depend on it.

Add Cycle Detection

How do we know if a node forms a cycle? We can add it to a list of cycle nodes before traversing its children. If we

enter a node with the same value, it will be in the cycles collection, so we throw an exception. If there are no

descendants with the same value then there are no cycles, so once we finish traversing the children, we remove the

current node from cycles.

Exiting the method with an exception is easy, just check if the current node is in the list of cycle nodes at the very

beginning of the DFS method then, keep track of the cycle nodes:

3. Shortest Path
You will be given a graph from the console your task is to find the shortest path and print it back on the console. The

first line will be the number of Nodes - N the second one the number of Edges - E, then on each E line the edge in form

{destination} – {source}. On the last two lines, you will read the start node and the end node.

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 9 of 9

Print on the first line the length of the shortest path and the second the path itself, see the examples below.

Example

Input Output

8

10

1 2

1 4

2 3

4 5

5 8

5 6

5 7

5 8

6 7

7 8

1

7

Shortest path length is: 3

1 4 5 7

11

11

1 5

1 4

5 7

7 8

8 2

2 3

3 4

4 1

6 2

9 10

11 9

6

3

Shortest path length is: 2

6 2 3

https://about.softuni.bg/
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

	Lab: Graph Theory, Traversal, and Shortest Paths
	1. Connected Components
	Example
	Hints
	DFS Algorithm
	Test
	Find All Components
	Read Input

	2. Source Removal Topological Sorting
	Input
	Output
	Example
	Source Removal Algorithm
	Compute Predecessors
	Remove Independent Nodes
	Detect Cycles

	DFS Topological Sorting
	DFS Algorithm
	Add Cycle Detection

	3. Shortest Path
	Example

