

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 1 of 10

Lab: Recursion and Backtracking
This document defines the lab for the "Algorithms – Fundamentals (C#)" course @ Software University".

Please submit your solutions (source code) to all below-described problems in Judge.

1. Recursive Array Sum
Write a program that finds the sum of all elements in an integer array. Use recursion.

Note: In practice, this recursion should not be used here (instead use an iterative solution), this is just an exercise.

Examples

Input Output

1 2 3 4 10

-1 0 1 0

Hints

Write a recursive method. It will take as arguments the input array and an index.

• The method should return the current element + the sum of all next elements (obtained by recursively

calling it):

• The recursion should stop when there are no more elements in the array:

• This is how the complete solution should look:

2. Recursive Drawing

Write a program that draws the figure below depending on n.

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://softuni.bg/trainings/4175/algorithms-fundamentals-with-c-sharp-may-2023
https://judge.softuni.org/Contests/2557/Recursion-and-Backtracking-Lab

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 2 of 10

Examples

Input Output

2 **

*

5 *****

**

*

Hints

• Set the bottom of the recursion:

• Define pre and post recursive behavior:

3. Generating 0/1 Vectors
Generate all n-bit vectors of 0 and 1 in lexicographic order.

Examples

Input Output

3 000

001

010

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 3 of 10

011

100

101

110

111

5 00000

00001

00010

…

11110

11111

Hints

• The method should receive as parameters the array which will be our vector and an index.

• The bottom of the recursion should be when the index is outside of the vector.

• To generate all combinations, create a for loop with a recursive call:

4. Recursive Factorial

Write a program that calculates the recursively factorial of a given number.

NOTE: In practice, this recursion should not be used here (instead use an iterative solution).

Examples

Input Output

5 120

10 3628800

Hints

Write a recursive method. It will take as arguments an integer number.

• The method should return the current element * the result of calculating the factorial of current element -

1 (obtained by recursively calling it).

• The recursion should stop when the last element is reached.

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 4 of 10

5. Find All Paths in a Labyrinth

You are given a labyrinth. Your goal is to find all paths from the start (cell 0, 0) to the exit, marked with 'e'.

• Empty cells are marked with a dash '-'.

• Walls are marked with a star '*'.
On the first line, you will receive the dimensions of the labyrinth. Next, you will receive the actual labyrinth.

The order of the paths does not matter.

Examples

Input Output

3

3

-*-

--e

RRDD

DDRR

3

5

-**-e

DRRRRU

DRRRUR

Hints

• Create methods for reading and finding all paths in the labyrinth.

• Create a static list that will hold directions (basically the path).

• Finding all paths should be recursive.

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 5 of 10

• Implement all helper methods that are present in the code above.

6. Queens Puzzle
In this lab, we will implement a recursive algorithm to solve the "8 Queens" puzzle. Our goal is to write a program to

find all possible placements of 8 chess queens on a chessboard so that no two queens can attack each other (on a

row, column, or diagonal).

Examples

Input Output

(no input) * - - - - - - -

- - - - * - - -

- - - - - - - *

- - - - - * - -

- - * - - - - -

- - - - - - * -

- * - - - - - -

- - - * - - - -

* - - - - - - -

- - - - - * - -

- - - - - - - *

- - * - - - - -

- - - - - - * -

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 6 of 10

- - - * - - - -

- * - - - - - -

- - - - * - - -

…

(90 solutions more)

Hints

Learn about the "8 Queens" Puzzle

Learn about the "8 Queens" puzzle, e.g. from Wikipedia: http://en.wikipedia.org/wiki/Eight_queens_puzzle.

Define a Data Structure to Hold the Chessboard

First, let’s define a data structure to hold the chessboard. It should consist of 8 x 8 cells, each either occupied by a

queen or empty. Let’s also define the size of the chessboard as a constant:

Define a Data Structure to Hold the Attacked Positions

We need to hold the attacked positions in some data structure. At any moment during the execution of the program,

we need to know whether a certain position {row, col} is under attack by a queen or not.

There are many ways to store the attacked positions:

• By keeping all currently placed queens and checking whether the new position conflicts with some of them.

• By keeping an int[][] matrix of all attacked positions and checking the new position directly in it. This will

be complex to maintain because the matrix should change many positions after each queen

placement/removal.

• By keeping sets of all attacked rows, columns, and diagonals. Let’s try this idea:

The above definitions have the following assumptions:

• The Rows are 8, numbered from 0 to 7.

• The Columns are 8, numbered from 0 to 7.

• The left diagonals are 15, numbered from -7 to 7. We can use the following formula to calculate the left

diagonal number by row and column: leftDiag = col - row.

• The right diagonals are 15, numbered from 0 to 14 by the formula: rightDiag = col + row.

Let’s take as an example the following chessboard with 8 queens placed on it at the following positions:

• {0, 0}; {1, 6}; {2, 4}; {3, 7}; {4, 1}; {5, 3}; {6, 5}; {7, 2}

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
http://en.wikipedia.org/wiki/Eight_queens_puzzle

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 7 of 10

Following the definitions above for our example, the queen {4, 1} occupies row 4, column 1, left diagonal -3, and right

diagonal 5.

Write the Backtracking Algorithm

Now, it is time to write the recursive backtracking algorithm for placing the 8 queens.

The algorithm starts from row 0 and tries to place a queen at some column at row 0. On success, it tries to place the

next queen at row 1, then the next queen at row 2, etc. until the last row is passed.

Check If a Position is Free

Now, let’s write the code to check whether a certain position is free. A position is free when it is not under attack by

any other queen. This means that if some of the rows, columns, or diagonals are already occupied by another queen,

the position is occupied. Otherwise, it is free.

Recall that col-row is the number of the left diagonal and row+col is the number of the right diagonal.

Mark / Unmark Attacked Positions

After a queen is placed, we need to mark as occupied all rows, columns, and diagonals that it can attack.

On removal of a queen, we will need a method to mark as free all rows, columns, and diagonals that were attacked

by it.

Print Solutions

When a solution is found, it should be printed on the console. First, introduce a solutions counter to simplify checking

whether the found solutions are correct.

Next, pass through all rows and all columns at each row and print the chessboard cells:

Testing the Code

The "8 queens" puzzle has 92 distinct solutions. Check whether your code generates and prints all of them correctly.

The solutionsFound counter will help you check the number of solutions. Below are the 92 distinct solutions:

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 8 of 10

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 9 of 10

Submit your code in judge, printing all 92 solutions, separated by a single line.

Optimize the Solution

Now we can optimize our code:

• Remove the attackedRows set. It is not needed because all queens are placed consecutively at rows 0…7.

• Try to use bool[] array for attackedColumns, attackedLeftDiagonals and

attackedRightDiagonals instead of sets. Note that arrays are indexed from 0 to their size and cannot

hold negative indexes.

7. Recursive Fibonacci

Each member of the Fibonacci sequence is calculated from the sum of the two previous members. The first two

elements are 1, 1. Therefore the sequence goes like 1, 1, 2, 3, 5, 8, 13, 21, 34…

The following sequence can be generated with an array, but that’s easy, so your task is to implement it recursively.

If the function GetFibonacci(n) returns the nth Fibonacci number, we can express it using GetFibonacci(n) =

GetFibonacci(n-1) + GetFibonacci(n-2).

However, this will never end and in a few seconds, a Stack Overflow Exception is thrown. In order for the recursion

to stop it has to have a "bottom". The bottom of the recursion is getFibonacci(1), and should return 1. The same

goes for getFibonacci(0).

Input

• On the only line in the input, the user should enter the wanted Fibonacci number N where 1 ≤ N ≤ 49

Output

• The output should be the nth Fibonacci number counting from 0

Examples

Input Output

5 8

10 89

21 17711

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org

© SoftUni – about.softuni.bg. Copyrighted document. Unauthorized copy, reproduction or use is not permitted.

Follow us: Page 10 of 10

Hint

For the nth Fibonacci number, we calculate the N-1st and the N-2nd number, but for the calculation of N-1st number

we calculate the N-1-1st(N-2nd) and the N-1-2nd number, so we have a lot of repeated calculations.

If you want to figure out how to skip those unnecessary calculations, you can search for a technique called

memoization.

file:///C:/Users/Ass%20Brothers/Desktop/SoftUni%20-%20REPO/Nakov's%20Converter/trunk/Document-Templates/about.softuni.bg
https://softuni.org
https://softuni.bg
https://www.facebook.com/softuni.org
https://www.instagram.com/softuni_org
https://twitter.com/SoftUni1
https://www.youtube.com/channel/UCqvOk8tYzfRS-eDy4vs3UyA
https://www.linkedin.com/company/softuni/
https://github.com/SoftUni
mailto:info@softuni.org
https://softuni.org
https://en.wikipedia.org/wiki/Memoization

	Lab: Recursion and Backtracking
	1. Recursive Array Sum
	Examples
	Hints

	2. Recursive Drawing
	Examples
	Hints

	3. Generating 0/1 Vectors
	Examples
	Hints

	4. Recursive Factorial
	Examples
	Hints

	5. Find All Paths in a Labyrinth
	Examples
	Hints

	6. Queens Puzzle
	Examples
	Hints
	Learn about the "8 Queens" Puzzle
	Define a Data Structure to Hold the Chessboard
	Define a Data Structure to Hold the Attacked Positions
	Write the Backtracking Algorithm
	Mark / Unmark Attacked Positions
	Print Solutions
	Testing the Code
	Optimize the Solution

	7. Recursive Fibonacci
	Input
	Output
	Examples
	Hint

